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I. INTRODUCTION

The canals in the Louisiana coastal marshes were dredged through soft muck

that is highly susceptible to erosion. Although they were initially man-made

features, the canals are undergoing constant changes, as would any natural morpho-

logical form in a dynamic environment. Erosive agents such as boat wakes, tidal

currents, wind waves, and wildlife activity have resulted in significant widening

and deepening.

The morphological changes that presently are occurring in the coastal canals

can be deduced from historic records, in which examples are given of trainasses

(trapper canals), originally dug three to four feet wide that have become enlarged

through use to accomodate oil exploration support vessels (Davis, 1973). Robinson's

Canal on Bayou Petit Calliou was a trainasse cut in about 1859; it now averages 150

feet in width (USGS Quadrangle, Lake Quitman, 1964). The widening was due

primarily to boat traffic (Davis, 1973). Van Lopik (1955) noted that on the 1921

Coast and Geodetic Survey chart #1277 a narrow cut, or pirogue trail, joined two

lakes (now Fearman's Lake). By 1955, this trail had enlarged "naturally" to a width

of 1600 feet and a depth of 3.5 feet.

Undercutting and consequent slumping of spoil banks and the gradual erosion of

natural banks introduces into the canal a large volume of sediment that is either

transported by the water or deposited along the bottom -- depending on the flow

regime, tide, and wind.

Many canals adjacent to the coast experience bidirectional tidal currents.

The flow can be further disrupted at intersections with other canals, bayous, or

lakes. Deposition may often occur at these junctions with resulting shoals and

other obstructions.

This junction problem is serious for larger waterways. In the Intracoastal

Canal, severe shoaling occurs in seven to ten locations annually along the 300-mile



waterway in Louisiana (Bordelon, 1973). The shoaling is more frequent in canals that

have no tidal influx; many inland canals silt up completely. By contrast, immediately

adjacent to the coast, channels with large tidal prisms and strong tidal currents

are flushed of sediment.
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II. STUDY AREA

The Southwestern Louisiana Canal (East-West Canal), chosen as the study area,

was originally cut by the South Louisiana Canal and Navigation Company as part of

a proposed major east-west waterway across the Lafourche delta (Figure i).

Construction was begun in 1879 and completed before 1888. An investigation during

the planning of the project indicated that a small trainasse, 3 to 4 feet wide,

already existed between Bayou Lafourche and Bayou Manuel. The new canal was cut

30 feet wide and was not less than four feet deep at mean tide. Little maintenance

was required to keep it open, although silting became a problem at Lake Jesse.

In August 1881, a 20-foot wide channel had to be cut through a 985-feet long bar

at this point.

In 1951, the State of Louisiana acquired ownership of the canal and through

the State Department of Public Works, conducted a detailed survey. Cross-sections

were surveyed at 500-foot intervals along its entire length. The eastern section

from Bayou Lafourche to Caminada Bay was dredged to give a depth of 9.5 feet below

sea level and a bottom width of 90 feet. The spoil was placed 30 to 50 feet back

from the water line. The western section, from Bayou Lafourche to Little Lake, was

left in the original state and, to date, has not been dredged except at pipeline

crossings. Spoil along this section,the result of dredging from intersecting canals,

is deposited only at the junction corners.

In only one location have the banks been reinforced by the Department of Public

Works. Riprap was placed on the Northeast corner of the Bayou Lafourche - Southwest

Canal intersection to protect the Le Fort cemetery at Leeville. Even so, much of the

cemetery has been destroyed as the banks continue to be eroded.

In 1967, the Department of Highways replaced a drawbridge on Route 1 that

crossed the canal and Bayou Lafourche just southwest of the intersection. The new

bridge is parallel to and south of the old bridge (since removed). During construction

3
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the western section of the canal was dammed off by highway embankment fill so that

water no longer flows directly through the old intersection. Instead, a new access

channel was cut, trending southeast, to join Bayou Lafourche south of the new bridge.

At present, the canal is 9 1/2 miles long and has an average width of 250 feet.

Just west of Bayou Lafourche, it runs through the Texaco oil field. The banks are

riddled with numerous smaller access canals cut perpendicular to it. The high

traffic on both sections of the waterway consists of barge tows, crew boats, shrimp

and oyster boats, and pleasure craft.
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III. STUDY TECHNIQUES

Field work, laboratory analyses, and interpretation of infrared color

imagery were used to provide data for study. The field work was conducted from

May to October of 1973 to quantify the rates of erosion and locate areas of

deposition. Samples of bank material were analysed in the laboratory to determine

the differences in physical characteristics of three bank types -- natural, shell,

and spoil and to relate these differences to the erosion rates.

The erosion rates were determined along the canal for a period of four months

at 25 sites representing the three bank types and a variety of environmental conditions

(Figure 2). Two plexiglass rods, each 60.0 cm long and 0.93 cm in diameter, were

driven horizontally into the bank at each site. As the bank retreated, the exposed

lengths of the rods were measured.

The erosion rates were determined from comparisons of these measurements, data

from a 1954 survey by the Louisiana Department of Public Works, air photos taken

in 1953 and 1969, and field measurements made in 1973.

Flow analyses were based on field observations and interpretations of infrared

color photographs. The National Aeronautics and Space Administration provided two

rolls of infrared color (contact duplicates) made from imagery taken on May 14 and

October 25, 1973.

The May imagery (recorded with a Wild RC-8 camera that produced 9" by 9"

transparencies at a scale of 1:6000) had sharp detail which was excellent for inter-

preting the turbidity patterns and bank types.

The October infrared color imagery (also contact duplicates) had a square

format ( 2 1/4" by 2 1/4") and a scale of 1:11500. The smaller scale (70 mm film in

a Hasselblad) was adequate for the study. An I2S camera also recorded black and

white multiband imagery (scale, 1:4600) in four spectral ranges: 1) 400-470 nm;

2) 470-580 nm; 3) 580-700 nm; and 4) 720-900nm.
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These remote sensing techniques provided an overall view of distribution patterns

that may not be evident at ground level. Infrared color accentuated turbidity

patterns and allowed good analyses of the interchange of water 
between intersecting

channels and flow patterns where two water masses meet.

Water samples for determining suspended sediment concentration were collected

at six sites (Figure 2) during the tropic and equatorial tides for a period of ten

weeks. One-half liter samplers were suspended in the water at 0.2 and 0.8 water

depth. In the laboratory, each sample was filtered through Millipore

filter paper (.47p pores) to determine the weight of sediment.

PRECEDING PAGE BLANK NOT FILMED
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IV. PHYSICAL PROCESSES

Erosion and deposition in the canal depend on the active physical processes

and the composition of the soils through which the canal is cut. In navigation canals,

wake waves and currents are the two major erosion agents. Wave attack is evident

wherever traffic is heavy, but erosion and sediment transport occur only where the

current velocity is fast enough and persistent. Where currents are disrupted at the

intersection with a smaller canal or by rough, winding channels, deposition will occur.

Therefore, the characteristic flows in a canal and the effects of tides, winds, and

intersecting water bodies on that flow must be analyzed to provide an understanding

of the overall.changes resulting from erosion and deposition.

Characteristic Flows

The complexity of the Southwestern Louisiana Canal is due to both the large

number of intersecting smaller canals and waterbodies and two sets of tidal currents

originating at opposite ends of the canal -- in Little Lake and Caminada Bay. The

eastern section of the canal, between Caminada Bay and the east side of Lake Jesse,

is about five miles long (Figure 3). The tide range at the Caminada Bay entrance

averages 30 cm; on the east side of Lake Jesse, it averages 17 cm. The range at

the bay entrance is directly controlled by the tides of the bay itself. The water

flows westerly into the canal at high tide and easterly, out of the canal, at low tide.

Near the eastern side of Lake Jesse, however, the flow is more complex. The

hydraulic gradient from Caminada Bay to Lake Jesse at high tide is small because of

the five-mile distance. At the entrance to Lake Jesse, the flow is generally eastward

(opposite to that at Caminada Bay) because the water level in Lake Jesse depends the

flow conditions in Bayou Lafourche, which is about a mile west. Only during strong

northeast or east winds is westward flow maintained from Caminada Bay all the way

to Lake Jesse.

10
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High tide occurs in Bayou Lafourche (24 cm average tidal range) several hours

after high tide at Caminada Bay (30 cm average range). Tidal currents from the Baye

flow east toward Lake Jesse which is about a mile away. At low tide in Bayou

Lafourche, the water flows from Lake Jesse toward the Bayou. On 
the west side

of Lake Jesse, the tide range is 21 cm.

The western section of the canal, between Bayou Lafourche and Little Lake,

is unusual in that Bayou Lafourche and Little Lake experience high and low 
tides

almost simultaneously. Because the tidal range at Little Lake averages 36 cm,

the high tides there are consistently above those in the bayou. Therefore, although

both may experience high tide, the higher level at Little 
Lake causes the water to

flow toward the bayou. At low tides, the opposite situation occurs; the water

flows westward from the bayou, which has the higher water surface.

Winds may either reinforce or restrict the tidal currents. Strong easterly

or westerly winds can accentuate or inhibit the weak currents to 
the extent that

all flow is in the same direction through one tidal cycle.

At ground level, turbulence and flow patterns could 
not be differentiated.

The direction of flow was difficult to determine other than at sample spots. 
However,

remotely-sensed imagery provided an overall view of the flow. Two sets of infrared

color aerial photographs and one set of multi-band imagery had been provided by

NASA. Although they had not been taken precisely at times of high or low tide,

the photographs illustrated flow directions and turbidity 
patterns for specific

wind and tide conditions (Figures 4 and 5).

The May imagery (Figure 4) was taken two to four hours after high tide

(depending on location in the canal), with northerly winds 
at twelve knots. Due to

the dominance of these winds the flow was to the west throughout the entire canal;

it was not in accordance with the predicted normal flow. On the eastern end of

the canal, water was blown northwest into the channel from the marsh through 
cuts

in the spoil bank; canal water was blown out through them: for example, as at

North Lake.
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In May, the most prevalent features on the eastern reach of the canal were

small gyres of turbidity along the irregular banks (Figure 4, Location A). These

gyres were not noticable from ground level. Dye had to be used to determine their

exact configuration. Water adjacent to the banks flowed opposite to the major

flow in the center of the channel. As the bank-edge flow encountered a protruding

portion of the bank, it separated and entered the main flow. With a change in

tide and direction of dominant flow, the gyres subsided and all water flowed

in the same direction. Along less irregular banks, the gyres were forced out

in the direction of dominant flow (straight arrows in Figures 4 and 5).

When the canal water from the east section enters Bayou Lafourche, no mixing

is evident. A sharp boundary between the two water masses remains (Figure 4,

Intersection B) because the southward-flowing bayou carries a higher concentration

of sediment and has less salinity. The fresher water from the bayou flows over

brackish water entering from the canal.

In the reach west of Bayou Lafourche, fewer gyres or noticeable circulation

patterns developed. Water from Bayou Lafourche enters the canal and flows eastward.

No distinct difference in turbidity was noticeable at junctions with smaller canals.

The October imagery (Figure 5) was taken one to three hours after low tide,

with a north wind of four knots. In the eastern section of the canal, the

reversal of the current had not yet occurred, and the water was still flowing as

in a low-tide condition.

East of North Lake, the water was turbulent. The flow direction between

South and North Lake was difficult to ascertain (Figure 5,Location A), while west

of South Lake, the flow was reversed and the water was moving west. The distance

between Caminada Bay and Lake Jesse decreases the effect of the water-surface gradient,

and the area is controlled by the water levels in Lake Jesse.

Near North Lake, water flows through the cuts into the canal. A sharp

delineation occurs between the water flowing from the cuts and that in the canal

(Figure 5,Location B). In the small dammed canal (Location A, Junction A), particulate

matter has settled out of the stagnant water. However, a break in the spoil dam

PRECEDING PAGE BLANK NOT FILMED



allows interchange of water between the two canals.

From Lake Jesse, the water flows westward to Bayou Lafourche and thence south-

ward as a distinct water mass that is separate from that in the bayou (Figure 5

Location C, Junction C). West of Bayou Lafourche, the water flows toward Little

Lake. The water masses entering from the canals intersecting the north bank have

a distinctly different color. At the western end (Intersection D), a large plume

indicates the entry of canal water into Little Lake.

Bank Erosion

The erosion rates along the Southwestern Louisiana Canal vary with the physical

characteristics and location of three types of banks: spoil, shell and natural --

each differing in constituent material, configuration, height, vegetational cover,

and response to active processes.

The spoil banks range in height from 30 to 90 cm and display a steep unvegetated

face on the canal side. The remaining bank surfaces are vegetated by Iva frutecens,

Batis sp., elderberry, and the toothache tree. Because of the bank heights, the

plant roots do not penetrate to the water level. Consequently, the vegetation does

not prevent erosion in this maximum zone of attack.

Morphological changes are more rapid on the spoil banks. Wakes and currents

erode the base, remove material, and undercut the bank. The undercut condition may

persist for several days before a portion of the bank sloughs off, particularly where

root systems bind and strenghten the upper bank surface. The loss of material is

most prevalent after the decline of high water levels, when the saturated material

with the added weight of water and the seepage forces decrease the bank stability

and increase the slumping rate.

Fiddler crabs also commonly burrow into the spoil banks. This natural process

also contributes to bank destruction through a breakdown of the internal soil structure

and reworking of the sediments. However, the importance of this effect, in comparison

to other physical agents, cannot be determined.

The shell banks have an average height of 60 cm. They are rounded in cross section

except where large portions have been eroded away. The sparse vegetation (dwarf

18



Iva), and the root structure does little to prevent erosion. Recession is less

apparent than on banks without shell. It occurs gradually as the result of winnowing

of the finer materials rather than by slumping.

The natural banks, because of seasonal climatic conditions, remain inundated

during the summer months and are exposed during the winter months. The banks are

covered by salt-tolerant plants such as Spartina alterniflora, Spartina patens, and

Salicornia sp. that have dense root structures capable of retaining and binding the

material to help resistance to erosion. Thus the recession of natural banks is

gradual. Soil material is first removed just below the Spartina root mass; eventually

the overhanging plants are torn loose and carried away.

Erosion rates measured at 25 sites along the Southwest Louisiana Canal differed

according to bank type and location (Figure 6; see also Table 2). The spoil banks

exhibited the highest average daily rate, 0.36 cm per day. The mean erosion rate

for natural banks was distorted by one extreme anomaly, 2.9 cm, observed for a

particular site at the junction of the Southwest Canal and another heavily-traveled

canal. The corners of canal junctions are particularly susceptible to erosion by

waves, which are refracted as they approach a corner or any irregular protrusion

in the bank with the wave energy being concentrated at that point. High erosion

rates at spoil sites 8, 15, and 21 also resulted because of similar conditions

(Figure 6; see also Table 2).

Variations in the erosion rate of one bank type occurred because of the

differences in location. It has already been pointed out that banks at junctions

have higher erosion rates. However, there may be broader differences between

sections of the canal if traffic volumes or current velocities vary. A comparison

of the two sections east and west of Bayou Lafourche indicate that the highest

rates were on the east section (Figure 6), which had an average of 0.735 cm; the

west section, only 0.455 cm.

Three explanations for the differences are possible:

1. Differences in the distribution of bank types among those sampled:

Of 6 shell banks, 5 were on the east reach; 3 of the 9 spoil banks were on the

19
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east reach; and 6 of the 10 natural banks were also on the east reach. Despite

this uneven distribution of sites, a comparison of the erosion rates for each bank type

indicates that the east reach is eroded as fast or faster than the west section.

This fact suggests that factors other than the uneven distribution of bank types

are responsible for the differences in erosion rates.

2. Differences in types and frequency of traffic: No quantitative data

is available on the type and frequency of traffic. However, 6 months of observations

indicate little difference between the east and west in this respect. Both accomodate

barges, tugs, commercial fishing boats, crew boats, and pleasure craft.

3. Differences in tidal current velocities: Marmer (1959) stated that

currents in the east section are stronger with a maximum velocity of 1.6 knots

(2.7 ft./sec.) and a minimum velocity of 0.7 knots (1.2 ft./sec.). The west section

has a maximum velocity of 1.0 knots (1.7 ft./sec.) and a minimum velocity of 0.4

knots (0.7 ft./sec.). The higher velocities in the east section seem to contribute

to the higher erosion rates.

Scouring, Deposition, and Dredging

During the last 10 years, the Southwest Louisiana Canal has become wider at a

faster rate than it had in the past (Table 1). The progressively increased annual

rates of widening are the result of two factors: the development of faster boats

and powerful motors with a consequent increase in bank and bottom erosion; and the

subsequently larger tidal prism. With widening and deepening, a larger volume of

water can flow through the canal with increased tractive force and thus a greater

erosive ability. Presently the canal is widening at an average annual rate of 16.3

feet. It should be noted that the erosion rate has been significantly reduced at

station 15000 (Figure 2 and Table 1), on the northeast corner of the intersection

with Bayou Lafourche. This site has the lowest erosion rate because it was reinforced

with several layers of riprap by the Louisiana Department of Public Works in 1953

and 1962 to protect the Le Fort Cemetery.

Deepening of the canal, as well as widening, is evident from comparing of cross

sections surveyed in 1880, 1953, and 1973 (Figure 7). In 1954, the east section

21



TABLE 1

CHANNEL WIDTHS AND ANNUAL EROSION RATES
SOUTHWESTERN LOUISIANA CANAL

1880-1973

WIDTH (Feet) EROSION (Feet/Year)
Station 1880 1953 1969 1973 1880-1953 1953-1969 1969-1973 Station

0 30 130 200 240 1.4 4.4 10.0 0
3000 30 120 185 240 1.2 4.1 13.6 3000
6000 30 130 200 240 1.4 4.3 10.0 6000
9000 30 130 270 320 1.4 2.4 12.5 9000

12000 30 130 300 350 1.4 4.3 12.5 12000
13100 30 110 200 280 1.1 4.7 20.0 13100
15000 30 140 155 190 1.5 0.9 8.8 15000
18000 30 145 220 320 1.6 4.6 25.0 18000
21000 30 120 150 200 1.2 1.8 10.0 21000
24000 30 140 240 310 1.5 6.2 18.5 24000
27000 30 120 210 270 1.2 5.6 15.0 27000
30000 30 110 215 300 1.1 6.5 21.2 30000
33000 30 120 250 320 1.2 8.1 18.5 33000
36000 30 130 250 330 1.4 7.5 20.0 36000
39000 30 125 230 320 1.3 6.5 22.5 39000
42000 30 140 250 300 1.5 6.8 12.5 42000
45000 30 150 270 360 1.6 7.1 20.0 45000
47500 30 150 270 360 1.6 7.5 22.5 47500

1.4 5.6 16.3 Average

Note: See Figure 2 for Station Locations and Figure 7 for Cross Sections
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was dredged between Stations 15000 and 47500 to a depth of 9.5 feet below sea level.

The increase in cross-sectional area between 1880 and 1953 and the differences between

the dredged depth and the 1973 cross sections are the result of scouring and flushing

of sediment by tidal currents.

Two portions of this section have not deepened naturally. At Station 21000,

where the canal is routed through Lake Jesse, the flow no longer remains channelized.

The reduced velocity allows suspended sediment to settle out. This sedimentation has

persisted since 1880 (Minute Books, South Louisiana Canal and Navigation Company).

Similar current disruption and sediment deposition occurs to the east of Lake Jesse

at South Lake and North Lake where the flow often stagnates, and suspended material

settles out.

Variations in the bottom configuration indicate other areas of deposition and

scouring. Large shoals occur at the east and west ends of the canal. The depth

on the east end is 11 feet, but shoals to 8.5 feet beyond the entrance to Caminada

Bay (Figure 8). At Little Lake, the west end, the depth of the bottom decreases

from 10 feet to 6.5 feet. These shoals result from the decreased velocity as the

sediment-laden canal water enters the bays.

Where the canal enters Bayou Lafourche, the bottom drops off sharply due to

the scouring action of the bayou (Figure 8).

The eroded material from the banks and channel bottom is carried away as

suspended and bed load or is deposited in the channel and adjacent water bodies.

Deposition and transportation are seasonal phenomena that depend on the flow

regime and weather conditions.

Six sites (Roman Numerals, Figure 2) along the canal illustrate the exchange

of suspended sediment during the summer months. Samples were collected during the

ingoing and outgoing tides once a week for eight weeks at each site. Average

weights of sediment per liter of water were analysed and categorized according to

sampling location and the direction of flow (Figure 9).

Suspended sediment is transported out of the canal at Caminada Bay and Little

Lake (Figure 9). However, the quantity brought during the summer months into the
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main channel from tributary water bodies (Lake Jesse and Bayou Lafourche), by

exceeding the amount removed, results in a temporary accumulation of sediment in

the canal. This condition is not necessarily maintained throughout the year.

In the previous discussion of the cross sections, it was indicated, however, that

there is a net annual loss of material due to scouring, with relatively little perma-

nent accumulation of sediment within the canal.

Meteorologic and tidal conditions account for the seasonal differences in

sediment transport and deposition. Wave and wind intensities on the Louisiana coast

are lowest during the summer months. In the winter, they are two to three times

greater (Stone, 1972). A slow alluviation of the bottom takes place during the

summer, while large volumes of sediment are scoured and transported out of the

canal during the winter. Much of the suspended material may be accumulating in

the adjacent smaller canals and water bodies.

No bed load samples were collected. It is possible that much of the sediment

removal occurs as bed load in the form of clay balls.
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V. PHYSICAL PROPERTIES OF CANAL BANK MATERIALS

The soil materials in the three bank types (natural, shell, and spoil) vary

in grain size, moisture content, organic content, and shear strength. These

variations in physical characteristics result in different erosion rates. Bank

samples from the 25 erosion sites (Figure 2) were analysed in the laboratory to

determine the composition of each type. The data were then used in a regression

analysis in an attempt to correlate physical properties with the erosion rate.

Grain Size Distribution

The variation of grain size among bank types is shown on a triangular classification

chart (Figure 10). Because of extreme values, the median point rather than the mean

was used as the basis for comparison among bank types. Spoil and shell banks are

very similar in composition and have almost identical distributions. The median

grain sizes for spoil banks are: 26% clay, 48% silt, and 22% sand. Shell banks

have: 25% clay, 47% silt, and 25% sand. Natural banks show a different distribution:

13% clay, 53% silt, and 32% sand.

Moisture Content

Moisture content analyses showed considerable differences existing between

natural banks and those consisting of spoil or shell (Table 2). The natural banks

are low and are frequently inundated. Arman (1969) states that the fibers in organic

soils as well as the pore spaces absorb water. Because of their higher relief, the

spoil banks are not saturated like the natural banks.

Water in soils is a major factor influencing their response to erosion. The

addition of water to the bank material reduces the angle of internal friction and

consequently, its shear strength.

Organic Content

Tests for organic material content were conducted for only natural banks. The

values ranged between 3.1 and 25.4 percent (Table 2).
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TABLE 2

PHYSICAL CHARACTERISTICS OF BANK MATERIALS
SOUTHWESTERN LOUISIANA CANAL

Vane
Erosion Clay Silt Sand Moisture Shear Organic

Bank Rate Content Content Content Content Strength Content

Site (cm/day) % % % % (Ib/inz ) %

Natural

1 0.542 8 67 25 68.5 - 11.9

2 0.632 12 53 35 57.2 - 8.9

4 0.094 12 61 27 79.2 - 22.7

5 0.156 10 53 37 80.2 - 26.4

11 2.868 29 40 31 43.7 - 3.1

12 0.321 16 52 32 64.0 - 15.0

14 0.155 14 43 43 71.6 - 22.5

18 0.396 29 57 14 42.6 - 18.0

23 0.268 10 45 45 61.2 - 16.0

24 0.880 14 54 32 71.8 - 16.5

spoil

3 0.584 22 56 22 32.1 10.01 -

6 0.048 37 48 15 30.8 14.38 -
8 1.070 33 47 20 36.3 9.45 -
9 0.318 30 51 19 38.3 8.37 -

10 0.393 41 54 5 36.0 11.00 -
13 0.114 26 51 23 35.2 11.16 -
15 1.140 20 33 47 36.6 11.16 -
21 1.515 12 43 45 44.3 8.77 -
25 0.929 13 47 40 27.6 11.39 -

Shell

7 0.241 31 52 17 35.4 9.25 -
16 0.400 41 37 22 34.4 9.38 -
17 0.647 8 47 45 25.1 7.68 -
19 0.275 20 52 28 27.5 6.04 -
20 0.433 36 47 17 29.4 5.63 -
22 0.146 12 48 40 27.8 3.88 -

Note: See Figure 2 for Testing and Sampling Locations
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Shear Strength

A field vane shear device was used to obtain the shear strengths of the

bank materials. However, the instrument was used only on the spoil and shell

banks because the saturated state of the natural banks made shear tests impossible.

Shear strength is a function of normal stress on the shearing surface, soil

cohesion, and the internal angle of friction. In the tests, the normal stress was

held constant. Therefore, the differences in shear strengths resulted only from

differences in cohesion and the internal angle of friction.

A comparison of the values in Table 2 for spoil and shell banks shows that

shell has, in general, lower shear strengths. Shell in the bank material reduces

the angle of internal friction.

Shear strengths were not determined for the natural banks. However, Arman

(1969) gives an excellent discussion on the strength of organic soils. Compression

tests on cylindrical specimens of organic soils show that they do not experience a

normal shearing surface failure, but rather yield or bulge. Organic soils have a

very high strength due to the presence of organic fibers, which act like tension

reinforcement. Microscopic examinations showed that there is an attraction between

the clay and the organic fibers (Arman, 1969, p. 44):

"The clay was able to develop additional strength
by using the strength of the organic fibers. Also

the presence of organic fibers "fixed" or absorbed

some of the free moisture available to the clay
minerals and this helped increase the strength of
the total mixture."

Arman's tests indicated that there is a direct relation between strength and

organic content.
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Statistical Correlation of Physical Properties

Linear, multiple, and stepwise multiple regression analyses were used in an

attempt to relate bank soil characteristics to erosion rates. Most of the results

were inconclusive. For natural banks, a high correlation coefficient indicated that

organic content increases the erosion resistance. For spoil and shell banks, low

correlation coefficients and high significance values indicated that the relationships

between variables (clay, silt, sand, and shear strength) could have occurred by

chance. The shear strength of shell banks is not a good indicator of erosion

resistance due to the armoring effect of the shells.
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VI. CONCLUSIONS

Destruction of banks by boat wake waves, a major problem in navigation

canals, becomes more important in canals subject to tidal influxes. Tidal

currents flush sediment from the canal and scour the bottom and sides of the

waterway. The cross-sectional area thus increases. An increase in the size of

the canal results in a larger tractive force against the wetted perimeter of

the channel. It also allows larger and faster vessels to frequent the waterway.

As a result, the channel continues to widen and erosion rates increase.

Erosion is the major process occurring in the Southwest Louisiana Canal,

with deposition being evident in only two locations. The erosion is self-perpetuating.

The continuous decrease in the slope of the canal banks and the increase in the

dispersion of energy is accompanied by an increase in the erosive energy as the

tidal prisms increase in size. The ratio of the increase of energy dispersion to

the increase of current energy is not known.

Erosion rates measured during this study ranged between .094 and 2.868 cm

per day, but these rates also varied according to bank material and location.

Such high rates are not unique to the Southwestern Louisiana Canal. Rates equally

high or higher have been measured in other canals in the coastal marsh.

The problem of bank destruction in marshland navigation canals is serious

but it defies an easy solution. Addition of shell to the banks slows the erosive

processes, but does not alleviate the problem. Riprap along the Le Fort Cemetery

significantly reduced the rate of widening yet even there widening continues.

The effects of bulkheads at the corners of canal junctions were not considered in

this study but such construction may be a possible erosion retardant at these

locations.

Of the 4572 miles of dredged canals and channels south of the Intracoastal

Waterway, about 1000 miles are navigable. Little concern is given to the processes
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active in these canals. However, widening results in destruction of valuable

marshland and estuarine environments. Landowners with property adjacent to canals

are constantly losing land. These losses have become a serious legal problem,

particularly in large canals such as the Intracoastal Canal, where the right-of-way

has already been exceeded.

The knowledge gained concerning the active physical processes in the

Southwestern Louisiana Canal are applicable to other waterways in coastal marshes,

although the processes which dominate may vary according to location and to the

individual characteristics of the waterway. These processes must be understood

along with other natural events because coastal marshes are valuable regions containing

renewable resources, such as fish and wildlife, as well as mineral resources. Yet

little consideration has been given to the existing problems of canal erosion or to

the future prospect of loss of land area.

The study reported here has shown that channel erosion rates progressively

increase, with no indications of stabilization. The canals continue- to widen until

they eventually merge with other waterways and cannot be distinguished from natural

water bodies.
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